
Available online at www.isas.org.in/jisas
Journal of the Indian Society of 

Agricultural Statistics 71(1) 2017   39–52

Generalised Neighbour Designs in Circular Blocks with Group-Divisible 
Association Scheme for Correlated Observations

G.R. Manjunatha1, A. Majumder2 and S.G. Patil3

1Central Sericultural Research & Training Institute, Berhampore, Murshidabad
2Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal

3A.C.R.I., Killikulam, Tamil Nadu Agricultural University

SUMMARY
In an m class Generalised Neighbour Balanced (GNm) design in circular blocks, any two treatments can occur together as neighbours in the 

design λi (i = 1, 2, …, m) number of times (Misra et al.1991; Iqbal et al. 2012; Hamad 2014 etc.). Literature survey reveals that in existing GNm designs 
no association scheme is involved for any pair treatments as neighbours. In the present paper a new series of GN2 designs from Group Divisible (GD) 
PBIB designs (Clatworthy 1973) has been developed. The series of designs also has a GD association scheme (Singular or Semi-regular or Regular) 
for the treatments as neighbours. The concept of merging of GD PBIB designs and the above mentioned GN2 designs with correlated observations 
will develop a new series of Group divisible Generalised neighbour balanced PBIB designs with two associate classes (GDGNPBIB).  The definitions, 
properties and structural characteristics of GDGNPBIB are also developed in paper. The blocks used in these designs are considered as circular using 
border plot concept (Azais et al. 1993; Bailey 2003; Jaggi et al. 2007; Majumder et al. 2015 etc.). The presence of correlation in the form of neighbour 
effects among the plots in agricultural experiments is used as given in Kiefer and Wynn (1981), Gill and Shukla (1985). The main advantage of 
GDGNPBIB designs with correlated observations is that the analyses of such designs are identical with GD PBIB designs. It has observed that any 
GD PBIB design with k = 3 will be a GDGNPBIB design in circular blocks. Moreover, a series of GDGNPBIB designs in circular blocks has been 
listed for k = 4. The efficiency values (A & D) of listed designs are presented for different values of ρ (-0.5 to +0.5).
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1.	 INTRODUCTION

Rees (1967) introduced the concept of neighbour 
balanced design in circular blocks in serology. Since 
then, the concept of construction of neighbour balanced 
design has become an important topic in statistics and 
its optimality criteria been studied in a much broader 
way.

In a design with Circular blocks, positions of 
treatments in experimental plots are considered in 2- 
dimensions (Left and Right). Let D (v, b, k) be a block 
design D with v treatments in b blocks of size k. In 
design D, if treatment a (= 1, 2,…, v) is on ith plot (= 1, 
2, …,k) in j th block (= 1,2,…,b), then the treatment a´ on 
(i+ 1)th plot (mod k) is regarded as the right-neighbour 

of treatment a in that j th block. On the contrary, the 
treatment on (i− 1)th plot (mod k), is considered as 
the left-neighbour of treatment a in j th block . Many 
authors (e.g. Azais et al. 1993; Bailey 2003; Tomar 
et al. 2005; Jaggi et al. 2006; Jaggi et al. 2007; 
Tomar and Jaggi 2007; Pateria et al. 2011; Bhowmik  
et al. 2012, Majumder et al. 2015 etc.) used the 
concept of border plots at the starting and at the end 
positions of a block. Here, the treatment in the last 
plot (or at right end) of a block has been placed in the 
initial border plot and the treatment in first plot (or at 
left end) of a block has been placed in the last border 
plot of the block. However, the border plot treatment 
effects are not considered in the analysis of the design. 
Thus, a circular block can also be used as a linear 
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block by using border plots at both ends of a linear 
block. Therefore, each treatment in a circular block 
has two neighbours, one on left and another on right.

If each treatment has every other treatment as 
neighbour equal number of times then the design is 
said to be a neighbour balanced (NB) design (Iqbal et 
al. 2012). Neighbour balance (NB) is desirable if it is 
known or thought that the effect of a plot is influenced by 
its neighbouring plots, in such cases nearest neighbour 
analysis is considered to be more efficient than 
classical analysis methods (Wilkinson et al. 1983; Gill 
and Shukla 1985). It also provides protection against 
the effects of correlated observations or potentially 
unknown trends highly correlated with plot positions 
within a block (Keifer and Wynn 1981; Cheng 1983; 
Jackroux 1998; Bailey and Druilhet 2004; Ahmed 
et al. 2011 and Sahu and Majumder 2012). But the 
condition in the definition of NB for a design cannot 
be met, always. In such situations, Misra (1988) and 
Misra et al. (1991) proposed the concept of m class 
Generalised Neighbour Balanced (GNm) designs as 
any two treatments can occur together as neighbours 
in the design λi (i = 1, 2, …, m) number of times. When 
λi = a constant ∀ i (=1, 2,…, m) the design becomes 
NB. Till then, several authors (Mishra 1988; Mishra 
and Chaure 1989; Mishra et al. 1991; Jaggi et al. 2006; 
Ahmed et al. 2009; Iqbal et al. 2012 etc.) constructed 
different series of GNm designs as GN2 or GN3 etc. 
All the series of the above designs are not identical in 
respect of neighbouring pairs. Actually, no particular 
association scheme is involved in the present literature 
of GNm designs. Recently, Hamad (2014) generated a 
series GN2 and GN3 designs (binary and non-binary) 
as partially neighbour balanced designs in circular 
blocks without any particular association scheme. 

It is well established fact that apart from BIB 
designs, PBIB designs are the most desirable in the 
field of non-orthogonal block designs block designs 
due to its well defined association schemes. The 
present piece of investigation aims to construct GN2 
designs with higher efficiency values having Group 
Divisible association scheme among the treatments 
as neighbours using GDPBIB designs. The developed 
designs are basically PBIB designs (v, b, r, k, ni and 
λ1i ) with group divisible association scheme. In these 
designs every blocks are circular in nature keeping 
border plots on both end sides of plots (Azais et al. 
1993 and Tomar et al. 2005) and every treatment 

having immediate neighbors λ2i (i = 1 & 2) number 
of times (Misra 1988). These neighbors are also 
following the similar association scheme of GDPBIB 
designs. Therefore, the developed designs are called 
as GDGNPBIB designs with parameters v, b, r, k, 
ni , λ1i and λ2i . The analysis and properties of such 
designs are identical to common GD designs even if 
the observations are correlated which surely provide 
advantages to the programmers and other users. 

1.1	 Useful Definitions and Model

Following are some useful definitions associated 
with nieghbour balanced block designs under 
correlated observations:

Definition 1.1: A block of treatments with border plots 
will be circular if a treatment in the left border is same 
as the treatment in the right end inner plot as well as if 
a treatment in the right border is same as the treatment 
in the left end inner plot. If all the blocks of a design 
are circular, then it is a circular design. 

Definition 1.2: A block design in circular blocks is 
neighbour balanced (NB) if every treatment occurs 
equally often with every other treatment as neighbours.

Definition 1.3: A block design in circular blocks 
will be two class Generalized Neighbour Balanced 
(GN2) design, if any two treatments can occur together 
as neighbours in the design λi (i = 1 & 2) number of 
times.

Definition 1.4: Two class Generalized Neighbour 
Balanced (GN2) design in circular blocks with two class 
association scheme will be two class Generalized 
Neighbour Partially Balanced Incomplete Block 
(GN2PBIB) design with an arrangement of v treatments 
in b circular blocks of size k (k < v) when

	 1.	 Any treatment occurs in r circular blocks.

	 2.	 Any pair of treatments occurs together in 
λ1i (i = 1 & 2) circular blocks and same pair 
treatments occurs together as neighbour in λ2i 
(i = 1 & 2) circular blocks.

	 3.	 Any treatment has exactly ni (i = 1 & 2) 
number of i th associate treatments.

	 4.	 If the treatments α and β are mutually i th 
associates in the association scheme, then α 
and β occur together in λ1i (i = 1 & 2) blocks 
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as well as α and β occur together as neighbour 
in λ2i (i = 1 & 2) blocks, where the integers 
λ1i and λ2i do not depend on the pair α and β 
and the treatments α and β are mutually i th 
associates (i = 1 & 2). 

In a GN2PBIB design, either all λ1i’s and λ2i’s are 
unequal, or all λ1i’s are unequal but λ2i’s are equal or 
all λ1i’s are equal but λ2i’s are unequal. Further, the 
association matrices (P) with the elements pjk

i are 
similar to PBIB designs.

The integers v, b, r, k, ni, λ1i and λ2i are the 
parameters of the GN2PBIB design.  Therefore, the 
parametric relations of a GN2PBIB design are:

1.	 vr = bk, 

2.	   1i
i

vn = −∑ , 

3.	 1   ( 1)i i
i

r kn λ = −∑  and 

4.	 2   2i i
i

rn λ =∑ .

The proofs of the first three relations are 
established for any PBIB design. In a design with 
circular blocks any treatment in any plot of the design 
has two neighbours. In the design each treatment is 
occurring r number of times. Therefore, the total 
number of neighbours of any treatment in the design 
will be 2r which is nothing but 2i i

i
n λ∑ .

Let us consider a class of GN2PBIB designs with 
v treatments, b blocks of sizes k (<v) with correlated 
observations. 

Let Yij be the response from the i th plot in the j th 
block (i = 1, 2,.., k, j = 1, 2, …, b). Moreover, the layout 
includes border plots at both ends of every block i.e., 
at 0th and (k +1)th position whose effects are not taken 
under analysis. In what follows, we only consider a 
fixed effects additive model for analyzing a block 
design having correlated observations. It is also to be 
mentioned that the effects of the neighbouring plots 
are not taken under consideration in the present model 
as the main aim of the present study is to simplify the 
analysis procedure of PBIB designs with correlated 
observations whose neighbouring pairs are also 
following the similar association scheme.

Y= μ1 + Xτ+ Zβ + ε,� (1.1)   

where, Y is a n × 1 vector of observations, μ is a general 
mean, 1 is a n × 1 vector of ones, X is a n × v incidence 
matrix of observations versus treatments, τ is a v × 1 
vector of treatment effects, Z is a n × b incidence 
matrix of observations versus blocks, β is a b × 1 
vector of block effects and ε is a n × 1 vector of random 
errors. According to Gill and Shukla (1985), ε be the 
error terms independently and normally distributed 
with mean zero and a variance and covariance matrix 
be V, such that -1 -2  e b k= ⊗σV I W  (Ib is an identity 
matrix of order b, ⊗  denotes the kronecker product 
and Wk is the correlation matrix of k observations 
within a block). Assuming the NN1 model of Kiefer 
and Wynn (1981), that there is no correlation among 
the observations between the blocks and correlation 
structure between plots within a circular block to be 
the same in each block and the structure of Wk will be,

1 0
1 0 0

0 1
0 1

Wk

ρ ρ 
 ρ ρ 

=  ρ ρ
 ρ ρ 
 ρ ρ 



  



 � (1.2)

where ρ (-1≤ ρ ≤ +1) is the correlation coefficient 
between the neighbouring plots in a block. Let us 
consider the above design set-up in the line of Gill 
and Shukla (1985). Then, the information matrix 
(C matrix) for estimating the treatment effects having 
correlated observations estimated by generalized least 
squares will be as follows:

( ) 1' -1 ' -1 ' -1 ' -1 = X V X  - X V Z Z V Z Z V X
−      

C � (1.3)

The above C matrix (1.3) for estimating the effect 
of treatments in a block design is symmetric, non-
negative definite with zero row and column sums. 

Let us consider only 2 class Generalized Neighbour 
Partially Balanced Incomplete Block (GN2PBIB) 
designs with parameters v, b, r, k, n1, n2, λ11, λ12, λ21 
and λ22 for the results in the next section.

2.	 �IMPORTANT RESULTS ON GN2PBIB 
DESIGNS FOR CORRELATED 
OBSERVATIONS

According to model (1.1) with correlated 
observations as given in 1.2, the matrix X ́ V-1Z will 
be considered as the treatment vs. block incidence 
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matrix of order v × b. Here, it should be noted that the 
structure of the matrix [(X’V-1Z) × (Z’V-1X)] (or N*N*’) 
is identical to structure of the NN’ of any two associate 
class PBIB designs, where N is the treatment vs. block 
incidence matrix of order v × b of the PBIB design. 
Thus, the diagonal elements of the matrix N*N*’ are all 
equal to r(1+2ρ)2 and in each row of N*N*’ there are 
precisely n1 positions filled by λ11(1+2ρ)2 and precisely 
n2 positions filled by λ12(1+2ρ)2. Again, the diagonal 
elements of the matrix X’V-1X (or r*δ) will be r and in 
each row of r*δ there are precisely n1 positions filled 
by ρλ21 and precisely n2 positions filled by ρλ22. In 
the design, the matrix Z´V-1Z (or k*δ) = [k(1+2ρ) × I], 
where I is an identity matrix of order b.

Lemma 2.1: The row or column sum of the matrix 
[(X’V-1Z) × (Z’V-1X)] of the above GNPBIB2 
design will be rk(1+2ρ)2 and det. of the matrix  
[(X’V–1Z) × (Z’V –‌1X)] will be 2 2(1 2 ) (1 2 ) -rk rk+ ρ + ρ

1 2( -1) ( -1)2 2 2
12 11(1 2 ) (1 2 ) - (1 2 )

n n
v r  λ + ρ + ρ λ + ρ   .

Proof. The result is straight forward following the 
steps given in Bose and Conor (1952) on the matrices 
developed by model 1.1 and 1.2.

Lemma 2.2: The diagonal elements of the C- matrix 
(1.3) of a GN2PBIB design will be

�
2

2
[ - (1 2 )]Cii

r k k
k

+ ρ
=  and in each row of C, there  

      are precisely n1 positions filled by

�
1

2
11 21

2
- (1 2 )Cij

k k
k

λ + ρ + ρλ
= , (j1 = 1, 2,…, n1) and   

      precisely n2 positions filled by 

2

2
12 22

2
- (1 2 )Cij

k k
k

λ + ρ + ρλ
= , (j2 = 1, 2,…, n2).

Proof.: According to the model with correlated 
observations (Gill and Shukla 1985) the structure of 
C matrix has been given in 1.3. The proof is straight 
forward for the GN2PBIB design with parameters v, b, 
r, k, n1, n2, λ11, λ12, λ21 and λ22.

Hereinafter, considered only the Group Divisible 
GN2PBIB designs called as GDGNPBIB designs.

2.1	 GD two-Class Association Scheme

Let there be v = mn treatments (m, n integer; m≥2, 
n≥2) arranged in rectangular array with m rows and n 

columns. On these mn treatments, we define a Group-
divisible (GD) association scheme as: two treatments 
are first associates if they belong to the same row of 
the array and others are second associates (Clatworthy 
1973).

The parameters of the GD association scheme are 
as follows

v = mn, n1= n-1, n2= n(m-1),

1
1

- 2 0
P  ( ) 

0 ( -1)ij
n

p
n m

 
= =  

 

2
2

0 -1
P = ( ) 

-1 ( - 2)ij
n

p
n n m
 

=  
 

2.2	 �Group Divisible GN2PBIB(GDGNPBIB) 
Designs for Correlated Observations	

A GN2PBIB design is said to be Group divisible 
design (GDGNPBIB) if it is based on Group Divisible 
(GD) association scheme. Let N* = (X’V-1Z) be the 
incidence matrix of the GDGNPBIB with parameters 
v = mn, b, r, k, n1= n-1, n2= n(m-1), λ11, λ12, λ21 and λ22. 
Then the eigen roots (θ1i, i = 0,1,2) with the respective 
multiplicity αi, (i = 0,1,2) of the matrix N*N*´ (Lemma 
2.1) will be 

2
10  (1 2 )rkθ = + ρ , 	 α0 =1;� (2.1)

( ){ }11 12 11 12

 (1 2 )

( -  ) -   (-1) (  ) (1 2 )
-  ,

θ = + ρ

 λ λ γ + ∆ + λ + λ + ρ    
						      i=1,2;� (2.2)

1 2 1 2 1 2 ( -  )  (  ) (-1)
2 2

i
i

n n n n n n+ + γ + α = +   
, 

						      i=1,2,
Where,

2 1
12 12  p -  pγ = , 1 2

12 12  p  pβ = + , 2   2  1∆ = γ + β + , 
n1= n-1 and n2= n(m-1).

Since Lemma 2.1, N*N*´ is a non-negative definite, 
it is necessary that 2 2

11(1 2 ) (1 2 )r   + ρ ≥ λ + ρ     and 
2 2

12(1 2 ) (1 2 )rk v   + ρ ≥ λ + ρ    , which simply implies 
(r ≥ λ11) and (rk ≥vλ12).  Based on the eigen roots of 
N*N*´ or det. of N*N*´, GDGNPBIB designs can be 
divided into the following three types
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Singular, if r = λ11;

Semi-regular, if r > λ11 and rk = vλ11 and

Regular, if r > λ11 and rk > vλ11.

Similarly, for (X´V-1X) matrix of GDGNPBIB 
Design, the eigen roots (θ2i, i= 0,1,2) with multiplicities 
αi (i= 0,1,2) times will be

20 1 21 2 22   (  )   (1 2 )r n n rθ = + λ + λ ρ = + ρ , α0 = 1;
� (2.3)

( ){ }
2

21 22 21 22

 

( -  ) -   (-1) (  )
  

2

i

i

r

θ =

 λ λ γ + ∆ + λ + λ ρ  − , 

					           i=1,2,αi;� (2.4)

1 2 1 2 1 2 ( -  )  (  ) (-1)
2 2

i
i

n n n n n n+ + γ + α = +   
,  

						      i=1 and 2.

Based on above results of (2.1 to 2.4), we have the 
following lemma. 

Lemma 2.3: The eigen roots (values) of information 
matrix (C) of GDGNPBIB Design with parameters 
v = mn, b, r, k, n1= n-1, n2= n(m-1), λ11, λ12, λ21 and λ22 
will be

10
0 20 -

(1 2 )k
 θ

κ = θ + ρ 
 = 0 with multiplicity 1;

11
1 21 -

(1 2 )k
 θ

κ = θ + ρ 
with multiplicity α1 and 

12
2 22 -

(1 2 )k
 θ

κ = θ + ρ 
 with multiplicity α2.

Proof: Results are straight forward following the 
results from 2.1 to 2.4.

3.	 �METHOD OF CONSTRUCTION FOR 
GDGNPBIB DESIGNS

An extensive list of PBIB designs with two 
associate classes was prepared by Clatworthy (1973). 
The solutions of the listed GD (Singular [S], Semi 
Regular [SR] and Regular [R]) designs or the repetition 
of the listed designs of Clatworthy (1973) are used to 
construct GDGNPBIB Designs in circular blocks by 
either a little adjustment of positions of treatments in a 
block or by no adjustment.  

Method 3.1: All the listed GD designs in Clatworthy 
(1973) with k = 3 are themselves a GDGNPBIB 
Designs in circular blocks with parameters [v = mn, 
b, r, k = 3, n1= n-1, n2= n(m-1), λ11, λ12, λ21(=λ11) and 
λ22(=λ12) ].

Proof: In a circular block with size 3, each treatment 
in a block has two neighbours.  It is obvious that the 
occurrence of number of pairs of ith (1st or 2nd) associate 
treatments in the design will be same as the occurrence 
of number of pairs of same ith (1st or 2nd) associate 
treatments as neighbours in the design. 

Example 3.1: Consider a Semi regular PBIB design 
(SR18, Clatworthy, 1973) with parameters v = 6 
(=3x2), b = 4, r = 2, k = 3, n1=1, n2=4, λ1=0, λ2=1. 
The above PBIB design itself is a GDGNPBIB designs 
(v = 6, b = 4, r = 2, k = 3, m = 3, n = 2, n1 = 1, n2 = 4, 
λ11=0, λ12=1, λ21(=0) and λ22(=1)) in circular blocks, 
whose solution is given by:

3 1 2 3 1
6 1 5 6 1
6 2 4 6 2
5 3 4 5 3

The above GDGNPBIB design requires lesser 
number of blocks compared to the GN2 design (see 
number 2 of Table 1) of Iqbal, et al., (2012) for same 
v = 6 and k = 3.

Method 3.2: A series of GDGNPBIB Designs in 
circular blocks having parameters [v = mn, b, r, k 
(≥ 4), n1 = n-1, n2 = n(m-1), λ11, λ12, λ21 and λ22] can 
be constructed from the GD designs or the repetition 
of the designs of Clatworthy (1973) with parameters 
[v = mn, b, r, k (≥ 4), n1= n-1, n2= n(m-1), λ1 λ2] after a 
little adjustment of positions of treatments in a block 
or without adjustment if the following conditions are 
satisfied.

1.	 For any two integers s and t (both should not 
be zero simultaneously), then 1 2( ) |  2sn tn r+ .

2.	 2  2i i
i

rn =λ∑ , i = 1, 2.

Proof: Let the 1st (or 2nd) associate treatments of a 
particular treatment be appeared as neighbour in the 
design s (or t) number of times, where s and t be either 
zero or any positive integer but both should not be zero 
simultaneously. The total number of neighbours in a 
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GDGNPBIB design with respect to any treatment will 
be 2r. This 2r should be divisible by the occurrences of 
ith(1st or 2nd) associate treatments as neighbours. Thus 
the condition 1 is satisfied. The proof of condition 2 is 
already given in Definition 1.4.

Example 3.2: Consider a little adjustment of positions 
of treatments in a Singular PBIB design (Clatworthy, 
1973) with parameters v = 10, b = 10, r = 4, k = 4, 
m = 5, n = 2, n1= 1, n2= 8, λ1= 4 & λ2=1. Then PBIB 
design becomes a GDGNPBIB design in circular 
blocks having parameters (v = 10, b = 10, r = 4, k = 4, 
m = 5, n = 2, n1 = 1, n2 = 8, λ11=4, λ12=1, λ21=0 and 
λ22=1), Here, 2r = 8 and 2r/(sn1+tn2) = 8/(0+8) = 1; 
where s=0 & t=1, whose solution is given by:

7 1 2 6 7 1
8 2 3 7 8 2
9 3 4 8 9 3
10 4 5 9 10 4
6 5 1 10 6 5
3 6 8 1 3 6
4 7 9 2 4 7
5 8 10 3 5 8
1 9 6 4 1 9
2 10 7 5 2 10

4.	 �EFFICIENCY OF GDGNPBIB DESIGNS 
FOR CORRELATED OBSERVATIONS

For a connected block design d, let κ1, κ2,…., κv-1, 
be the non-zero (v-1) eigenvalues of C- matrix of the 
design. The design is universal optimal as defined by 
Kifer (1975), if all κi’s are equal with maximum trace 
of C-matrix. Thus, the above GDGNPBIB designs are 
not universally optimum like any GDPBIB designs.

Now define 
v-1

-1
A i

i 1

1(d)
v -1 =

ϕ = κ∑  and 
1

v-1 v-1
-1

D i
i 1

(d)
=

 
ϕ = κ 

 
∏ .

Then, a design is A- [D-] optimal if it maximizes 
the φA(d), φD(d)  over  D  (v, b, k). The A and D 
efficiencies of a design d over D (v, b, k) given by Gill 
and Shukla (1985), as:

*
A

A
A

(d )e (d) 
(d)

ϕ
=
ϕ

*
D

D
D

(d )e (d) 
(d)

ϕ
=
ϕ

Where d* is a hypothetical universally optimal 
design whose information matrix C has nonzero 

eigenvalue are equal i.e., 
v-1

-1
i

i 1

1
v -1 =

κ∑   with multiplicity 
v-1.

Result 4.1: If 1

2
 κ

= ψ
κ , be a constant for different 

values of ρ(-1 ≤ ρ ≤ +1) of a GDGNPBIB design, then 
the efficiencies (A and D) of the design will remain 
constant over different values of ρ.

Proof: Let GDGNPBIB be a design with parameters 
v = mn, b, r, k, n1= n-1, n2= n(m-1), λ11, λ12, λ21 and λ22; 
its C matrix has α1+α2 nonzero eigen values, let these 
be denoted by κ1 and κ2 with multiplicity α1 and α2, 
respectively. Let us consider the above definitions of 
optimality, φA and φD values for d and d*.

If 1

2
 κ

= ψ
κ , => 1 2 κ = ψκ , then the 

efficiencies (A and D) of a design d over  d* 

will be 
2

1 2
A

1 2 1 2

( )e (d)
( )( )
 α + α ψ

=  α ψ + α α + α ψ 
 and

1

1 2
1 2

D
1 2

( )

e (d)
( )

α
α +α

  
  α + α ψ

   =  
α ψ + α 

 
  

.

When ψ is a constant for every value of ρ, then 
these efficiency values remain same over the different 
ρ values because efficiencies are the function of ø  
value and not the function of ρ. Actually, it is also 
observed that if in a GDGNPBIB design, the following 
relation holds, then the efficiencies (A and D) of the 
design will remain constant over different values of ρ.

� ]

2
2 12 1 11 12 11 22 1 2 12 22

12 21 1

2( ) -  ( 1) - ( -1)

( )  0

n n k n n k

n k

 λ + λ λ λ λ + λ λ
+λ λ + =

Remark 1: If ρ (+0.6 ≤ ρ ≤ +1), the α1 non-zero 
eigen roots (κ1’s) of C matrix become negative for a 
GDGNPBIB design with correlated observations. The 
efficiencies (A and D) of the designs may be negative 
or more than unity. In such cases, ρ values are ignored.
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Remark2: Two associate class PBIB designs with any 
association scheme for k = 3, will be a GNPBIB2 as in 
definition 1.4.

The solutions of GDGNPBIB Designs are listed 
in Table 1 for k(=4).Efficiency values (A and D) of 
Table 1 designs are presented in Table 2 for different 
values of ρ (-1 ≤ ρ ≤ +0.5).
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Table 1. List of GD Generalized Neighbour Partially Balanced Incomplete Block Designs in circular blocks for k=4

v b R k λ11 λ12 n1 n2 λ21 λ22 Adjusted Solutions Source*

6 3 2 4 2 1 1 4 0 1 1  2  4  5
2  3  5  6
3  1  6  4

S1
(3,2)

6 6 4 4 4 2 1 4 0 2 1	 2	 4	 5
2	 3	 5	 6
3	 1	 6	 4

4	 5	 1	 2
5	 6	 2	 3
6	 4	 3	 1

S2
 (3,2)

8 6 3 4 3 1 1 6 0 1 1	 2	 5	 6
3	 4	 7	 8
1	 3	 5	 7

2	 4	 6	 8
1	 4	 5	 8
2	 3	 6	 7

S7
(4,2)

10 10 4 4 4 1 1 8 0 1 1	 2	 6	 7
2	 3	 7	 8
3	 4	 8	 9
4	 5	 9	 10
5	 1	 10	 6

6	 8	 1	 3
7	 9	 2	 4
8	 10	 3	 5
9	 6	 4	 1
10	 7	 5	 2

S9
(5,2)

12 15 5 4 5 1 1 10 0 1 1	 2	 7	 8
3	 4	 9	 10
5	 6	 11	 12
1	 3	 7	 9
2	 6	 8	 12
4	 5	 10	 11
1	 4	 7	 10
2	 5	 8	 11

3	 6	 9	 12
1	 5	 7	 11
2	 3	 8	 9
4	 6	 10	 12
1	 6	 7	 12
2	 4	 8	 10
3	 5	 9	 11

S11
(6,2)

14 21 6 4 6 1 1 12 0 1 1	 2	 8	 9
2	 3	 9	 10
3	 4	 10	 11
4	 5	 11	 12
5	 6	 12	 13
6	 7	 13	 14
7	 1	 14	 8
1	 3	 8	 10
2	 4	 9	 11
3	 5	 10	 12
4	 6	 11	 13

5	 7	 12	 14
6	 1	 13	 8
7	 2	 14	 9
1	 4	 8	 11
2	 5	 9	 12
3	 6	 10	 13
4	 7	 11	 14
5	 1	 12	 8
6	 2	 13	 9
7	 3	 14	 10

S13
(7,2)

16 28 7 4 7 1 1 14 0 1 1	 2	 9	 10
3	 4	 11	 12
5	 6	 13	 14
7	 8	 15	 16

3	 6	 11	 14
5	 7	 13	 15

S14
(8,2)

1	 3	 9	 11
2	 8	 10	 16
4	 5	 12	 13
6	 7	 14	 15

1	 4	 9	 12
2	 7	 10	 15
3	 5	 11	 13
6	 8	 14	 16

1	 5	 9	 13
2	 6	 10	 14
3	 11	 7	 15
4	 8	 12	 16

1	 6	 9	 14
2	 5	 10	 13
3	 8	 11	 16
4	 7	 12	 15

1	 7	 9	 15
2	 3	 10	 11
4	 6	 12	 14
5	 8	 13	 16

1	 8	 9	 16
2	 4	 10	 12

6 18 12 4 9 6 2 3 6 4 1	 2	 4	 6
2	 3	 5	 1
3	 4	 6	 2
4	 5	 1	 3
5	 6	 2	 4
6	 1	 3	 5
1	 2	 6	 4
2	 3	 1	 5
3	 4	 2	 6

4	 5	 3	 1
5	 6	 4	 2
6	 1	 5	 3
2	 1	 4	 6
3	 2	 5	 1
4	 3	 6	 2
5	 4	 1	 3
6	 5	 2	 4
1	 6	 3	 5

R94
(2,3)

Note: *Clatworthy, 1973; Figures in parentheses indicates the association scheme (m, n)
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v b r k λ11 λ12 n1 n2 λ21 λ22 Adjusted Solutions Source*

8 30 15 4 9 6 1 6 6 4 1	 5	 3	 4
1	 5	 7	 8
2	 6	 7	 4
2	 6	 3	 8
3	 7	 1	 2
3	 7	 5	 6
4	 8	 1	 6
4	 8	 2	 5
1	 5	 2	 6
3	 7	 4	 8
1	 5	 4	 3
1	 5	 8	 7
2	 6	 4	 7
2	 6	 8	 3
3	 7	 2	 1

3	 7	 6	 5
4	 8	 6	 1
4	 8	 5	 2
1	 5	 6	 2
3	 7	 8	 4
1	 3	 5	 4
1	 7	 5	 8
2	 7	 6	 4
2	 3	 6	 8
3	 1	 7	 2
3	 5	 7	 6
4	 1	 8	 6
4	 2	 8	 5
1	 2	 5	 6
3	 4	 7	 8

R97
(4,2)

9 27 12 4 9 3 2 6 6 2 1	 4	 7	 2
2	 5	 8	 3
3	 6	 9	 4
4	 7	 1	 5
5	 8	 2	 6
6	 9	 3	 7
7	 1	 4	 8
8	 2	 5	 9
9	 3	 6	 1
1	 4	 2	 7
2	 5	 3	 8
3	 6	 4	 9
4	 7	 5	 1
5	 8	 6	 2

6	 9	 7	 3
7	 1	 8	 4
8	 2	 9	 5
9	 3	 1	 6
1	 2	 4	 7
2	 3	 5	 8
3	 4	 6	 9
4	 5	 7	 1
5	 6	 8	 2
6	 7	 9	 3
7	 8	 1	 4
8	 9	 2	 5
9	 1	 3	 6

R104
(3,3)

10 75 30 4 15 6 4 5 10 4 1	 2	 3	 4
1	 2	 5	 6
1	 3	 5	 7
1	 4	 8	 9
2	 3	 8	 9
2	 4	 7	 10
3	 4	 6	 10
1	 6	 8	 10
1	 7	 9	 10
2	 5	 8	 10
2	 6	 7	 9
3	 5	 9	 10
3	 6	 7	 8
4	 5	 6	 9
4	 5	 7	 8
1	 3	 5	 7
1	 3	 5	 9
1	 3	 7	 9
1	 5	 7	 9
3	 5	 7	 9
2	 4	 6	 8
2	 4	 6	 10
2	 4	 8	 10
2	 6	 8	 10
4	 6	 8	 10

4	 5	 9	 6
4	 5	 8	 7
1	 3	 7	 5
1	 3	 9	 5
1	 3	 9	 7
1	 5	 9	 7
3	 5	 9	 7
2	 4	 8	 6
2	 4	 10	 6
2	 4	 10	 8
2	 6	 10	 8
4	 6	 10	 8

R107
(2,5)

1	 3	 2	 4
1	 5	 2	 6
1	 5	 3	 7
1	 8	 4	 9
2	 8	 3	 9
2	 7	 4	 10
3	 6	 4	 10
1	 8	 6	 10
1	 9	 7	 10
2	 8	 5	 10
2	 7	 6	 9
3	 9	 5	 10
3	 7	 6	 8
4	 6	 5	 9
4	 7	 5	 8
1	 5	 3	 7
1	 5	 3	 9
1	 7	 3	 9
1	 7	 5	 9
3	 7	 5	 9
2	 6	 4	 8
2	 6	 4	 10
2	 8	 4	 10
2	 8	 6	 10
4	 8	 6	 10

1	 2	 4	 3
1	 2	 6	 5
1	 3	 7	 5
1	 4	 9	 8
2	 3	 9	 8
2	 4	 10	 7
3	 4	 10	 6
1	 6	 10	 8
1	 7	 10	 9
2	 5	 10	 8
2	 6	 9	 7
3	 5	 10	 9
3	 6	 8	 7

Note: *Clatworthy, 1973; Figures in parentheses indicates the association scheme (m, n)
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v b r k λ11 λ12 n1 n2 λ21 λ22 Adjusted Solutions Source*

12 36 12 4 6 3 1 10 4 2 1	 2	 5	 7
2	 3	 6	 8
3	 4	 7	 9
4	 5	 8	 10
5	 6	 9	 11
6	 7	 10	 12
7	 8	 11	 1
8	 9	 12	 2
9	 10	 1	 3
10	 11	 2	 4
11	 12	 3	 5
12	 1	 4	 6

7	 8	 1	 11
8	 9	 2	 12
9	 10	 3	 1
10	 11	 4	 2
11	 12	 5	 3
12	 1	 6	 4

R109
(6,2)

1	 5	 2	 7
2	 6	 3	 8
3	 7	 4	 9
4	 8	 5	 10
5	 9	 6	 11
6	 10	 7	 12
7	 11	 8	 1
8	 12	 9	 2
9	 1	 10	 3
10	 2	 11	 4
11	 3	 12	 5
12	 4	 1	 6

1	 2	 7	 5
2	 3	 8	 6
3	 4	 9	 7
4	 5	 10	 8
5	 6	 11	 9
6	 7	 12	 10

6 9 6 4 3 4 2 3 0 4 1	 2	 3	 4
5	 6	 1	 2
3	 4	 5	 6
1	 4	 3	 6
5	 2	 1	 4

3	 6	 5	 2
1	 6	 3	 2
5	 4	 1	 6
3	 2	 5	 4

SR35
(2,3)

8 24 12 4 0 6 1 6 0 4 1	 2	 3	 4
5	 6	 7	 8
2	 7	 8	 1
6	 3	 4	 5
3	 8	 1	 6
7	 4	 5	 2
4	 1	 6	 7
8	 5	 2	 3
1	 2	 4	 3
5	 6	 8	 7
2	 7	 1	 8
6	 3	 5	 4

3	 8	 6	 1
7	 4	 2	 5
4	 1	 7	 6
8	 5	 3	 2
2	 1	 3	 4
6	 5	 7	 8
7	 2	 8	 1
3	 6	 4	 5
8	 3	 1	 6
4	 7	 5	 2
1	 4	 6	 7
5	 8	 2	 3

SR36
(4,2)

12 27 9 4 0 3 2 9 0 2 1	 2	 3	 4
7	 10	 5	 4
6	 11	 9	 4
1	 7	 6	 8
11	 5	 2	 8
10	 9	 3	 8
1	 11	 10	 12
9	 2	 7	 12
5	 3	 6	 12
1	 2	 4	 3
7	 10	 4	 5
6	 11	 4	 9
1	 7	 8	 6
11	 5	 8	 2

10	 9	 8	 3
1	 11	 12	 10
9	 2	 12	 7
5	 3	 12	 6
1	 3	 2	 4
7	 5	 10	 4
6	 9	 11	 4
1	 6	 7	 8
11	 2	 5	 8
10	 3	 9	 8
1	 10	 11	 12
9	 7	 2	 12
5	 6	 3	 12

SR41
(4,3)

Note: *Clatworthy, 1973; Figures in parentheses indicates the association scheme (m, n)
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v b r k λ11 λ12 n1 n2 λ21 λ22 Adjusted Solutions Source*

16 48 12 4 0 3 3 12 0 2 1	 2	 3	 4

5	 6	 7	 8

9	 10	 11	 12

13	 14	 15	 16

1	 6	 11	 16]

2	 5	 12	 15

3	 8	 9	 14

4	 7	 10	 13

1	 7	 12	 14

2	 8	 11	 13

3	 5	 10	 16

4	 6	 9	 15

1	 8	 10	 15

2	 7	 9	 16

3	 6	 12	 13

4	 5	 11	 14

1	 7	 14	 12

2	 8	 13	 11

3	 5	 16	 10

4	 6	 15	 9

1	 8	 15	 10

2	 7	 16	 9

3	 6	 13	 12

4	 5	 14	 11

SR44

(4,4)

1	 3	 2	 4

5	 7	 6	 8

9	 11	 10	 12

13	 15	 14	 16

1	 11	 6	 16

2	 12	 5	 15

3	 9	 8	 14

4	 10	 7	 13

1	 12	 7	 14

2	 11	 8	 13

3	 10	 5	 16

4	 9	 6	 15

1	 10	 8	 15

2	 9	 7	 16

3	 12	 6	 13

4	 11	 5	 14

1	 2	 4	 3

5	 6	 8	 7

9	 10	 12	 11

13	 14	 16	 15

1	 6	 16	 11

2	 5	 15	 12

3	 8	 14	 9

4	 7	 13	 10
Note: *Clatworthy, 1973; Figures in parentheses indicates the association scheme (m, n)

Table 2. A- and D- efficiency of GD Generalized Neighbour Partially Balanced Incomplete block design of series of method 3.2 for 
correlated observations

v b r k λ11 λ12 m n n1 n2 λ21 λ22 ρ A-efficiency D-efficiency

6 3 2 4 2 1 3 2 1 4 0 1 -1 0.857 0.922

-0.9 0.879 0.934

-0.8 0.900 0.947

-0.7 0.921 0.958

-0.6 0.942 0.970

-0.5 0.963 0.981

-0.4 0.979 0.989

-0.3 0.992 0.996

-0.2 0.999 0.999

-0.1 0.997 0.999

0 0.980 0.990

0.1 0.940 0.970

0.2 0.861 0.932

0.3 0.718 0.858

0.4 0.464 0.709

0.5 0.061 0.308
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v b r k λ11 λ12 m n n1 n2 λ21 λ22 ρ A-efficiency D-efficiency
6 6 4 4 4 2 3 2 1 4 0 2 -1 0.857 0.922

-0.9 0.879 0.934
-0.8 0.900 0.947
-0.7 0.921 0.958
-0.6 0.942 0.970
-0.5 0.963 0.981
-0.4 0.979 0.989
-0.3 0.992 0.996
-0.2 0.999 0.999
-0.1 0.997 0.999

0 0.980 0.990
0.1 0.940 0.970
0.2 0.861 0.932
0.3 0.718 0.858
0.4 0.464 0.709
0.5 0.061 0.308

8 6 3 4 3 1 4 2 1 6 0 1 -1 0.891 0.942
-0.9 0.910 0.953
-0.8 0.929 0.963
-0.7 0.948 0.973
-0.6 0.965 0.982
-0.5 0.981 0.991
-0.4 0.992 0.996
-0.3 0.999 0.999
-0.2 0.999 0.999
-0.1 0.988 0.994

0 0.961 0.981
0.1 0.909 0.955
0.2 0.819 0.909
0.3 0.669 0.828
0.4 0.420 0.671
0.5 0.053 0.272

10 10 4 4 4 1 5 2 1 8 0 1 -1 0.908 0.952
-0.9 0.926 0.962
-0.8 0.944 0.971
-0.7 0.960 0.980
-0.6 0.975 0.987
-0.5 0.989 0.994
-0.4 0.997 0.998
-0.3 0.999 0.999
-0.2 0.996 0.998
-0.1 0.980 0.990

0 0.947 0.974
0.1 0.890 0.945
0.2 0.795 0.895
0.3 0.643 0.810
0.4 0.398 0.649
0.5 0.049 0.254
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v b r k λ11 λ12 m n n1 n2 λ21 λ22 ρ A-efficiency D-efficiency
12 15 5 4 5 1 6 2 1 10 0 1 -1 0.919 0.958

-0.9 0.936 0.967
-0.8 0.953 0.976
-0.7 0.968 0.984
-0.6 0.981 0.990
-0.5 0.993 0.996
-0.4 0.999 0.999
-0.3 0.999 0.999
-0.2 0.993 0.996
-0.1 0.974 0.987

0 0.938 0.969
0.1 0.877 0.938
0.2 0.780 0.886
0.3 0.626 0.799
0.4 0.385 0.636
0.5 0.047 0.243

14 21 6 4 6 1 7 2 1 12 0 1 -1 0.926 0.962
-0.9 0.942 0.970
-0.8 0.958 0.979
-0.7 0.972 0.986
-0.6 0.985 0.992
-0.5 0.995 0.997
-0.4 0.999 0.999
-0.3 0.999 0.999
-0.2 0.990 0.995
-0.1 0.969 0.985

0 0.931 0.965
0.1 0.868 0.933
0.2 0.769 0.880
0.3 0.615 0.791
0.4 0.376 0.626
0.5 0.046 0.236

16 28 7 4 7 1 8 2 1 14 0 1 -1 0.931 0.964
-0.9 0.947 0.973
-0.8 0.962 0.981
-0.7 0.976 0.988
-0.6 0.987 0.993
-0.5 0.996 0.998
-0.4 0.999 0.999
-0.3 0.998 0.999
-0.2 0.988 0.994
-0.1 0.965 0.983

0 0.926 0.963
0.1 0.862 0.929
0.2 0.761 0.875
0.3 0.607 0.785
0.4 0.369 0.619
0.5 0.045 0.230



52 G.R. Manjunatha et al. / Journal of the Indian Society of Agricultural Statistics 71(1) 2017   39–52

v b r k λ11 λ12 m n n1 n2 λ21 λ22 ρ A-efficiency D-efficiency

6 9 6 4 3 4 2 3 2 3 0 4 -1 0.857 0.913

-0.9 0.869 0.921

-0.8 0.883 0.929

-0.7 0.896 0.938

-0.6 0.911 0.948

-0.5 0.927 0.958

-0.4 0.942 0.967

-0.3 0.957 0.976

-0.2 0.973 0.985

-0.1 0.987 0.993

0 0.997 0.999

0.1 0.999 1.000

0.2 0.984 0.992

0.3 0.926 0.967

0.4 0.746 0.896

0.5 0.149 0.601
$6 18 12 4 9 6 2 3 2 3 6 4 0 0.992 0.996
$8 30 15 4 9 6 4 2 1 6 6 4 0 0.997 0.998
$9 27 12 4 9 3 3 3 2 6 6 2 0 0.952 0.978

$10 75 30 4 15 6 2 5 4 5 10 4 0 0.969 0.987
$12 36 12 4 6 3 6 2 1 10 4 2 0 0.994 0.997
$8 24 12 4 0 6 4 2 1 6 0 4 0 0.980 0.990

$12 27 9 4 0 3 4 3 2 9 0 2 0 0.984 0.991
$16 48 12 4 0 3 4 4 3 12 0 2 0 0.987 0.993

Note: $ indicates efficiencies (A & D) are independent to ρ values (+1≤ ρ≤-1), see also Result 4.1.




